## Polynomial root finding algorithm

Posted in Uncategorized

## Dirichlet series for a symmetric matrix

Let $\mu(n)$ be the Möbius function

$a(n) = \sum\limits_{d|n} d \cdot \mu(d)$

$T(n,k)=a(GCD(n,k))$

$\sum\limits_{k=1}^{\infty}\sum\limits_{n=1}^{\infty} \frac{T(n,k)}{n^c \cdot k^s} = \sum\limits_{n=1}^{\infty} \frac{\lim\limits_{z \rightarrow s} \zeta(s)\sum\limits_{d|n} \frac{\mu(d)}{d^{(z-1)}}}{n^c} = \frac{\zeta(s) \cdot \zeta(c)}{\zeta(c + s - 1)}$

$-\frac{\zeta '(s)}{\zeta (s)}=\lim_{c\to 1} \, \left(\frac{\zeta (c) \zeta (s)}{\zeta (c+s-1)}-\zeta (c)\right)$

Posted in Uncategorized

## Train of thought leading from the zeta function to the Möbius function

(*start Mathematica 8*) (*Start with Riemann zeta:*) Zeta[s] (*Take the logarithm:*) Log[Zeta[s]] (*Take the derivative:*) D[Log[Zeta[s]], s] Clear[s, c] (*Generalize it:*) Limit[Zeta[c] - Zeta[s]*Zeta[c]/Zeta[s + c - 1], c -> 1] (*See that Zeta[s]*Zeta[c]/Zeta[s+c-1] is the Dirichlet generating \ function of:*) Table[Limit[ Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)]/n^c, s -> 1], {n, 1, 12}] (*Which in turn is the Dirichlet generating function of the rows or \ columns of the symmetric matrix:*) nn = 32; A = Table[ Table[If[Mod[n, k] == 0, k^ZetaZero[k], 0], {k, 1, nn}], {n, 1, nn}]; B = Table[ Table[If[Mod[k, n] == 0, MoebiusMu[n]*n^ZetaZero[-n], 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[N[A.B]] (*For comparison,here is a plot of the von Mangoldt function from the \ matrix:*) ListLinePlot[Total[N[A.B]/Range[nn]]] (*end*)

Posted in Uncategorized

## The Möbius function times n

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0, -73, 74, 0, 0, 77, -78, -79, 0, 0, 82, -83, 0, 85, 86, 87, 0, -89, 0, 91, 0, 93, 94, 95, 0, -97, 0, 0, 0

Mathematica: MoebiusMu[Range[100]]*Range[100]

Keywords: core, sign, number theory

Posted in Uncategorized

## Arne Bergstroms paper 26 6 2013

$u=2 i \pi c_2+\log \left(i \left(2 \pi c_1+\pi \right)\right)$

Posted in Uncategorized

## Arne Bergstroms paper

Posted in Uncategorized

## Magic series and Magic constants

Craig Knecht sent me an email explaining magic series and magic constants. The following program lists magic series that add up to certain constants using the TableForm command in Mathematica:

Mathematica 8:

(*program for reordering of integer partitions start*)
TableForm[
Table[Table[
IntegerPartitions[
magicConstant][[Flatten[
Position[
Table[Length[IntegerPartitions[magicConstant][[i]]], {i, 1,
Length[IntegerPartitions[magicConstant]]}],
order]]]], {magicConstant, 1, 12}], {order, 1, 12}]]
(*program for reordering of integer partitions end*)

Integer Partitions

By removing the integer partitions that contain duplicates we get magic series:

Mathematica 8:

(*program for listing magic series start*)
nn = 14;
A = Table[
Table[IntegerPartitions[
magicConstant][[Flatten[
Position[
Table[Length[IntegerPartitions[magicConstant][[i]]], {i, 1,
Length[IntegerPartitions[magicConstant]]}],
order]]]], {magicConstant, 1, nn}], {order, 1, nn}];
TableForm[
Table[Table[
Table[If[
Length[DeleteDuplicates[A[[n]][[k]][[j]]]] ==
Length[A[[n]][[k]][[j]]], A[[n]][[k]][[j]], “”], {j, 1,
Length[A[[n]][[k]]]}], {n, 1, k}], {k, 1, nn}]]
(*program for listing magic series end*)

Magic Series

Posted in Uncategorized

## Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one

Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one

The code does not work when copy pasted in this blogging platform,
so here is a link to Pastebin with some working code:

http://pastebin.com/TC1wcuzF

Mathematica:

scale = 1000000;
xres = .00001;
x = Exp[Range[0, Log[scale], xres]];
RealPart = Log[x]*FourierDST[-(SawtoothWave[x] – 1)*x^(-1/2)];
ImaginaryPart = Log[x]*FourierDCT[-(SawtoothWave[x] + 1)*x^(-1/2)];
datapointsdisplayed = 300;
ymin = -15;
ymax = 15;
g1 = ListLinePlot[
Sqrt[scale]*{RealPart[[1 ;; datapointsdisplayed]],
ImaginaryPart[[1 ;; datapointsdisplayed]]},
PlotRange -> {ymin, ymax}, DataRange -> {0, 68.00226987379779},
Filling -> Axis];
Show[Flatten[{g1,
Table[Graphics[{PointSize[0.013],
Point[{N[Im[ZetaZero[n]]], 0}]}], {n, 1, 16}]}],
ImageSize -> Large]

Posted in Uncategorized

## The summation symbol

$\sum\limits_{n=1}^1 1=1$

$\sum\limits_{n=1}^2 1=1+1$

$\sum\limits_{n=1}^3 1=1+1+1$

$\sum\limits_{n=1}^4 1=1+1+1+1$

$\sum\limits_{n=1}^5 1=1+1+1+1+1$

$\sum\limits_{n=1}^6 1=1+1+1+1+1+1$

Posted in Uncategorized

## A visual interpretation of Riemann zeta zeros via the Fourier transform

Mathematica 8:

scale = 1000000;
xres = .001;
limit = 3000;
x = Exp[Range[0, Log[scale], xres]];
a = FourierDCT[(SawtoothWave[x])*x^(-1/2)];
b = -FourierDST[(SawtoothWave[x] – 1)*x^(-1/2)];
(*ListLinePlot[((SawtoothWave[x])*x^(-1/2))[[1;;limit]]]*)
gs = ListLinePlot[-((SawtoothWave[x] – 1)*x^(-1/2))[[1 ;; limit]],
PlotStyle -> RGBColor[1, 0, 1]];
gsine = ListLinePlot[
Table[Sin[Im[ZetaZero[1]] x], {x, 0, limit*xres, xres}]];
Show[gs, gsine, PlotRange -> {-1, 1}]
ListLinePlot[
Table[Sin[
Im[ZetaZero[1]] x]*(-((SawtoothWave[x] – 1)*x^(-1/2))), {x,
0.00001, limit*xres, xres}]]

Frequency interpretation of Riemann zeta zero via the Fourier transform:

The two curves multiplied:

I believe the sum of the latter should be zero in order for the
frequency of the sine curve to be equal to a Riemann zeta zero.

Posted in Uncategorized