Mobius function approximation from Riemann zeta zeros

From this page by Robert Baillie at Wolfram Demonstrations:
Mertens function

I learned to plot approximately the Mobius function:

Clear[n, k, A, a, B, b, kk, ii, i]
kk = 70;(*number of Zeta zeros used*)
ii = 10;(*reciprocal of x-axis spacing*)
n = Table[i, {i, 0, 42, 1/ii}];
n[[1]] = 1;
Monitor[A =
Table[Re[N[1/Zeta'[ZetaZero[k]]*n^(ZetaZero[k] - 1)]], {k, 1,
kk}];, k]
a = Table[{i/ii, Plus @@ A[[All, i]]}, {i, 1, Length[n]}];
(*a[[ii+1]]={(ii+1)/ii,0};*)
b = Table[{i + 1/4, MoebiusMu[i]}, {i, 1, 42}];
g1 = ListPlot[b, PlotMarkers -> {Automatic, 12}, PlotStyle -> {Black}];
g2 = ListLinePlot[a, PlotRange -> {-3, 3}];
Show[g1, g2, PlotRange -> {-3, 3}, ImageSize -> Large]

Advertisements
This entry was posted in Uncategorized. Bookmark the permalink.