Dirichlet series for a symmetric matrix

Let \mu(n) be the Möbius function

a(n) = \sum\limits_{d|n} d \cdot \mu(d)

T(n,k)=a(GCD(n,k))

\sum\limits_{k=1}^{\infty}\sum\limits_{n=1}^{\infty} \frac{T(n,k)}{n^c \cdot k^s} = \sum\limits_{n=1}^{\infty} \frac{\lim\limits_{z \rightarrow s} \zeta(s)\sum\limits_{d|n} \frac{\mu(d)}{d^{(z-1)}}}{n^c} = \frac{\zeta(s) \cdot \zeta(c)}{\zeta(c + s - 1)}

-\frac{\zeta '(s)}{\zeta (s)}=\lim_{c\to 1} \, \left(\frac{\zeta (c) \zeta (s)}{\zeta (c+s-1)}-\zeta (c)\right)

Advertisements
This entry was posted in Uncategorized. Bookmark the permalink.